
1 

SMART CONTRACT CODE REVIEW AND SECURITY 

ANALYSIS REPORT FOR Lydian Lion Gold  /BEP20 

TOKEN SMART CONTRACT 

BLOCK SOLUTIONS 

Smart Contract Code Review and 

Security Analysis Report 

For Name: Lydian Lion Gold
BEP20 Token 

Request Date: 2023-05-20 

Completion Date: 2023-05-21 

Language: Solidity 

pg. 1 

https://bscscan.com/address/0x55B01FEb2001743b3251EC1258449e6F3b630cBf#code
https://bscscan.com/address/0x55B01FEb2001743b3251EC1258449e6F3b630cBf#code


2 

SMART CONTRACT CODE REVIEW AND SECURITY ANALYSIS 
REPORT FOR LYDIAN LION GOLD TOKEN SMART CONTRACT

Audited Project 

Block Solutions was commissioned by LYDIAN LION GOLD /BEP20 TOKEN Smart 

Contract 

Owners to perform an audit of their main smart contract. The purpose of the audit 

was to achieve 

The following: 

 Ensure that the smart contract functions as intended.

 Identify potential security issues with the smart contract.

The information in this report should be used to understand the risk exposure of 

the smart contract, and as a guide to improve the security posture of the smart 

contract by remediating the issues that were identified. 

pg. 2 



3 

SMART CONTRACT CODE REVIEW AND SECURITY ANALYSIS REPORT 

FOR LYDIAN LION GOLD BEP20 TOKEN SMART CONTRACT

Contract Functions 

Executable 

1. function decimals() external view returns (uint8)

2. function symbol() external view returns (string memory)

3. function name() external view returns (string memory)

4. function totalSupply() external view returns (uint256)

5. function balanceOf(address account) external view returns (uint256)

6. function transfer(address recipient, uint256 amount) public returns (bool)

7. function transferFrom(address sender, address recipient, uint256 amount) public
returns (bool)

8. function allowance(address owner, address spender) external view returns (uint256)

9. function approve(address spender, uint256 amount) public returns (bool)

10. function increaseAllowance(address spender, uint256 addedValue) public
returns (bool)

11. function decreaseAllowance(address spender, uint256 subtractedValue) public
returns (bool)

12. function _transfer(address sender, address recipient, uint256 amount) internal

13. function mint(uint256 amount) public onlyOwner

14. function _approve(address owner, address spender, uint256 amount) internal

15. function _renounceOwnership() public onlyOwner

16. function _transferOwnerShip(address  newOwner) public onlyOwner

pg. 3 



4 

SMART CONTRACT CODE REVIEW AND SECURITY ANALYSIS REPORT 

FOR LYDIAN LION GOLD BEP20 TOKEN SMART CONTRACT

Checklist 

Compiler Errors Passed 

Possible delays in data delivery Passed 

Timestemp Dependence Passed 

Integer overflow and underflow Passed 

Race Conditions and reentrancy Passed 

DoS with Revert Passed 

DoS with block gas limit Passed 

Methods Execution Permissions Passed 

Economy model of the contract Passed 

Private user data leaks Passed 

Malicious events log Passed 

Scoping and declarations Passed 

Uninitialized storage pointers Passed 

Arithmetic accuracy Passed 

Design logic Passed 

Impact on the exchange rate Passed 

Oracle calls Passed 

Cross-function race conditions Passed 

Fallback function security Passed 

Safe inherited contracts and implementation usage Passed 

Whitepaper-Website-Contract correlation Not 
checked 

Front running Not 
checked 

pg. 4 



5 

SMART CONTRACT CODE REVIEW AND SECURITY ANALYSIS REPORT 

FOR LYDIAN LION GOLD BEP20 TOKEN SMART CONTRACT

Executable Functions 

BEP20 Token Smart contract 

Transfer ownership of the contract to a new account (‘newOwner’).Can only be called by 

authorized address. 

Function will transfer token to a specified address recipient is the address to transfer. Only 

those addresses allowed to call this function that are not blacklisted. ”amount” is the 

amount to transfer 

Approve the passed address to spend the specified number of token on behalf of msg. 

sender. “spender” is the address which will spend the funds. ”amount” is the number of 

tokens to be spent. Only those addresses allowed to call this function that are not 

blacklisted. 



Transfer tokens from the “sender” account to the “recipient” account. The calling account 

must already have sufficient tokens approved from spending from the “sender” account 

and “sender” account must have sufficient balance to transfer. Only those addresses 

allowed to call this function that are not blacklisted. 

pg. 5 



6 

SMART CONTRACT CODE REVIEW AND SECURITY ANALYSIS

REPORT FOR LYDIAN LION GOLD BEP20 TOKEN SMART CONTRACT

Leaves the contract without owner. It will not be possible to call 'onlyOwner` functions anymore. 

Can only be called by the current owner. Renouncing ownership will leave the contract without an 

owner, thereby removing any functionality that is only available to the owner. 

This will increase approval number of tokens to spender address. "_spender" is the address 

whose allowance will increase and "addedValue" are number of tokens which are going to   

be added in current allowance. approve should be called when allowed[_spender] == 0. To 

increment allowed is better to use this function to avoid 2 calls (and wait until the first 

transaction is mined). 

This will decrease approval number of tokens to spender address. “_spender" is the address  

Whose allowance will decrease and "subtractedValue" are number of tokens which are 

going to be subtracted from current allowance. 

pg. 6 



7 

SMART CONTRACT CODE REVIEW AND SECURITY ANALYSIS REPORT 

FOR LYDIAN LION GOLDBEP20 TOKEN SMART CONTRACT

 In This function the owner allows to the spender to spend their tokens. 

 In This function the owner can mint the token: 



    Testing Summary 



9 

Quick Status 

pg. 9 



10 

SMART CONTRACT CODE REVIEW AND SECURITY ANALYSIS REPORT 

FOR LYDIAN LION GOLD BEP20 TOKEN SMART CONTRACT

Overall Audit Result: Passed

Executive Summary 

According to the standard audit assessment, Customer's solidity 

smart contract is Well-Secured. Again, it is recommended to 

perform an Extensive audit assessment to bring a more assured 

conclusion. 

We used various tools like Mythril, Slither and Remix IDE. At the same time 

this finding is based on critical analysis of the manual audit. 

All issues found during automated analysis were manually reviewed and 

applicable vulnerabilities are presented in the Quick Stat section. 

We found critical, 0 high, 0 medium and 0 low level issues. 

pg. 11 



11 

SMART CONTRACT CODE REVIEW AND SECURITY ANALYSIS

REPORT FOR LYDIAN LION GOLD BEP20 TOKEN SMART 

CONTRACT

Code Quality: 

Bep20 TOKEN Smart Contract protocol consists of one smart 

contract. It has other inherited contracts like Context, IBEP20, Ownable, 

Blacklistable. These are compact and well written contracts. 

Libraries used in Bep20 TOKEN Smart Contract are part of its logical 

algorithm. They are smart contracts which contain reusable 

code. Once deployed on the blockchain (only once), Our team has not 

provided scenario and unit test scripts, which would help to determine the 

integrity of the code in an automated way. 

Overall, the code is not commented. Commenting can provide rich 

documentation for functions, return variables and more. 

Documentation: 

As mentioned above, it's recommended to write comments in the smart 

contract code, so anyone can quickly understand the programming flow as 

well as complex code logic. We were given a LYDIAN LION GOLD Bep20 

TOKEN 

Smart Contract code in the form of File. 

Use of Dependencies 

As per our observation, the libraries are used in this smart contract 

infrastructure that are based on well-known industry standard open-source 

projects. And even core code blocks are written well and systematically. The 

smart contract does not interact with other external smart contracts. 

pg. 11



12 

SMART CONTRACT CODE REVIEW AND SECURITY ANALYSIS REPORT 

FOR LYDIAN LION GOLD BEP20 TOKEN SMART CONTRACT

Audit findings 

Critical: 

No critical severity vulnerabilities were found. 

High: 

No high severity vulnerabilities were found. 

Medium: 

No Medium severity vulnerabilities were found. 

Low: 

No low severity vulnerabilities were found. 

pg. 12



13 

SMART CONTRACT CODE REVIEW AND SECURITY ANALYSIS REPORT 

FOR LYDIAN LION GOLD BEP20 TOKEN SMART CONTRACT

Conclusion 

The Smart Contract code passed the audit successfully with some 

considerations to take. There were no warnings raised. We were given a 

contract code. And we have used all possible tests based on given objects as 

files. So, it is good to go for production. Since possible test cases can be 

unlimited for such extensive smart contract protocol, hence we provide no 

such guarantee of future outcomes. We have used all the latest static tools 

and manual observations to cover maximum possible test cases to scan 

everything. Smart contracts within the scope was manually reviewed and 

analyzed with static analysis tools. Smart Contract’s high-level description 

of functionality was presented in Quick Stat section of the report. 

Audit report contains all found security vulnerabilities and other issues in 

the reviewed code. 

Security state of the reviewed contract is “Well Secured” 

Our Methodology 

We like to work with a transparent process and make our reviews a 

collaborative effort. The goals of our security audits are to improve the 

quality of systems we review and aim for sufficient remediation to help 

protect users. The following is the methodology we use in our security audit 

process. 

pg. 13



14 

SMART CONTRACT CODE REVIEW AND SECURITY ANALYSIS REPORT 

FOR LYDIAN LION GOLD BEP20 TOKEN SMART CONTRACT

Manual Code Review: 

In manually reviewing all of the code, we look for any potential issues with 

code logic, error handling, protocol and header parsing, cryptographic 

errors, and random number generators. We also watch for areas where more 

defensive programming could reduce the risk of future mistakes and speed 

up future audits. Although our primary focus is on the in-scope code, we 

examine dependency code and behavior when it is relevant to a particular 

line of investigation. 

Vulnerability Analysis: 

Our audit techniques included manual code analysis, user interface 

interaction, and whitebox penetration testing. We look at the project's web 

site to get a high-level understanding of what functionality the software 

under review provides. We then meet with the developers to gain an 

appreciation of their vision of the software. We install and use the relevant 

software, exploring the user interactions and roles. While we do this, we 

brainstorm threat models and attack surfaces. We read design 

documentation, review other audit results, search for similar projects, 

examine source code dependencies, skim open issue tickets, and generally 

investigate details other than the implementation. 

Documenting Results: 

We follow a conservative, transparent process for analyzing potential 

security vulnerabilities and seeing them through successful remediation. 

Whenever a potential issue is discovered, we immediately create an Issue 

entry for it in this document, even though we have not yet verified the 

feasibility and impact of the issue. This process is conservative because we 

document our suspicions early even if they are later shown to not represent 

exploitable vulnerabilities. We generally, follow a process of first 

pg. 14 



15 

SMART CONTRACT CODE REVIEW AND SECURITY ANALYSIS REPORT 

FOR LYDIAN LION GOLD BEP20 TOKEN SMART CONTRACT

Documenting the suspicion with unresolved questions, then confirming the 

issue through code analysis, live experimentation, or automated tests. Code 

analysis is the most tentative, and we strive to provide test code, log 

captures, or screenshots demonstrating our confirmation. After this we 

analyze the feasibility of an attack in a live system. 

Suggested Solutions: 

We search for immediate mitigations that live deployments can take, and 

finally we suggest the requirements for remediation engineering for future 

releases. The mitigation and remediation recommendations should be 

scrutinized by the developers and deployment engineers, and successful 

mitigation and remediation is an ongoing collaborative process after we 

deliver our report, and before the details are made public. 

pg. 15 




